30 research outputs found

    Resolution of a shock in hyperbolic systems modified by weak dispersion

    Get PDF
    We present a way to deal with dispersion-dominated 'shock-type' transition in the absence of completely integrable structure for the systems that one may characterize as strictly hyperbolic regularized by a small amount of dispersion. The analysis is performed by assuming that, the dispersive shock transition between two different constant states can be modelled by an expansion fan solution of the associated modulation (Whitham) system for the short-wavelength nonlinear oscillations in the transition region (the so-called Gurevich-Pitaevskii problem). We consider as single-wave so bi-directional systems. The main mathematical assumption is that of hyperbolicity of the Whitham system for the solutions of our interest. By using general properties of the Whitham averaging for a certain class of nonlinear dispersive systems and specific features of the Cauchy data prescription on characteristics we derive a set of transition conditions for the dispersive shock, actually by-passing full integration of the modulation equations. Along with model KdV and mKdV examples, we consider a non-integrable system describing fully nonlinear ion-acoustic waves in collisionless plasma. In all cases our transition conditions are in complete agreement with previous analytical and numerical results

    Critical density of a soliton gas

    Get PDF
    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the KdV soliton gas dynamics. As a by-product of our derivation we find the speed of sound in the soliton gas with Gaussian spectral distribution function

    Generation of undular bores in the shelves of slowly-varying solitary waves

    Get PDF
    We study the long-time evolution of the trailing shelves that form behind solitary waves moving through an inhomogeneous media, within the framework of the variable-coeffecient Korteweg-de Vries equation. We show that the nonlinear evolution of the shelf leads typically to the generation of an undular bore and an expansion fan, which form apart but start to overlap and nonlinearly interact after a certain time interval. The interaction zone expands with time and asymptotically as time goes to infinity occupies the whole perturbed region. Its oscillatory structure strongly depends on the sign of the inhomogeneity gradient of the variable background medium. We describe the nonlinear evolution of the shelves in terms of exact solutions to the KdV-Whitham equations with natural boundary conditions for the Riemann invariants. These analytic solutions, in particular, describe the generation of small 'secondary' solitary waves in the trailing shelves, a process observed earlier in various numerical simulations

    Kinetic equation for a dense soliton gas

    Get PDF
    We propose a general method to derive kinetic equations for dense soliton gases in physical systems described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral distribution function of solitons due to soliton-soliton collisions. Owing to complete integrability of the soliton equations, only pairwise soliton interactions contribute to the solution and the evolution reduces to a transport of the eigenvalues of the associated spectral problem with the corresponding soliton velocities modified by the collisions. The proposed general procedure of the derivation of the kinetic equation is illustrated by the examples of the Korteweg – de Vries (KdV) and nonlinear Schr¨odinger (NLS) equations. As a simple physical example we construct an explicit solution for the case of interaction of two cold NLS soliton gases

    Spatial dispersive shock waves generated in supersonic flow of Bose-Einstein condensate past slender body

    Get PDF
    Supersonic flow of Bose-Einstein condensate past macroscopic obstacles is studied theoretically. It is shown that in the case of large obstacles the Cherenkov cone transforms into a stationary spatial shock wave which consists of a number of spatial dark solitons. Analytical theory is developed for the case of obstacles having a form of a slender body. This theory explains qualitatively the properties of such shocks observed in recent experiments on nonlinear dynamics of condensates of dilute alkali gases

    Dispersive shock waves and modulation theory

    Get PDF
    There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G. B. Whitham’s seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham’s averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg–de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs

    Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach

    Get PDF
    The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schr odinger (fNLS) equation, and b) the Riemann- Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove benefi cial for a broad range of problems involving the semiclassical fNLS

    An integrable model for undular bores on shallow water

    Get PDF
    On the basis of the integrable Kaup-Boussinesq version of the shallow water equations, an analytical theory of undular bores is constructed. The problem of the decay of an initial discontinuity is considered

    Oblique spatial dispersive shock waves in nonlinear Schrodinger flows

    Get PDF
    In dispersive media, hydrodynamic singularities are resolved by coherent wavetrains known as dispersive shock waves (DSWs). Only dynamically expanding, temporal DSWs are possible in one-dimensional media. The additional degree of freedom inherent in two-dimensional media allows for the generation of time-independent DSWs that exhibit spatial expansion. Spatial oblique DSWs, dispersive analogs of oblique shocks in classical media, are constructed utilizing Whitham modulation theory for a class of nonlinear Schrodinger boundary value problems. Self-similar, simple wave solutions of the modulation equations yield relations between the DSW’s orientation and the upstream/downstream flow fields. Time dependent numerical simulations demonstrate a convective or absolute instability of oblique DSWs in supersonic flow over obstacles. The convective instability results in an effective stabilization of the DSW

    Stationary expansion shocks for a regularized Boussinesq system

    Get PDF
    Stationary expansion shocks have been recently identified as a new type of solution to hyperbolic conservation laws regularized by non-local dispersive terms that naturally arise in shallow-water theory. These expansion shocks were studied in [1] for the Benjamin-Bona-Mahony equation using matched asymptotic expansions. In this paper, we extend the analysis of [1] to the regularized Boussinesq system by using Riemann invariants of the underlying dispersionless shallow water equations. The extension for a system is non-trivial, requiring a combination of small amplitude, long-wave expansions with high order matched asymptotics. The constructed asymptotic solution is shown to be in excellent agreement with accurate numerical simulations of the Boussinesq system for a range of appropriately smoothed Riemann data
    corecore